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Micelle–water partition coefficient (Kx) of naphtholazobenzimidazole dye
(NAB) in aqueous solutions of cetyltrimethylammonium bromide (CTAB)
and sodium dodecyl sulphate (SDS) has been determined spectrophoto-
meterically. Changes in absorption patterns of dye caused by surfactants
and solvents were quantified in terms of dye–surfactant ratio (nD/nS) and
solvent water partition coefficients (P), respectively. Multiple residence
sites have been suggested for dye molecules within micelles, based on shifts
in azo-hydrazone tautomeric equilibrium. Micelle–water partition coeffi-
cients were used to evaluate the influence of dye on critical micelle
concentration of CTAB and SDS. At same micelle concentration, M, the
relative solubility of NAB was greater in cationic surfactant CTAB than
in anionic surfactant SDS.

Keywords: dye–surfactant interaction; naphtholazobenzimidazole; partition
coefficient

1. Introduction

Surfactant-dependent optical properties of dye offer an opportunity to study
surfactant–dye interactions [1–17]. Surfactant-induced changes in spectral absorp-
tion have frequently been used to highlight various factors that contribute towards
the growth of surfactant–dye aggregates [18–26]. The binding behaviour of these
aggregates provides the key to manufacturing of nanostructured materials [27,28].
The physical behaviour of surfactant micelles can be visualised as a pseudo model to
mimic drug–membrane interactions [29]. Lipid–water distribution coefficient is more
critical than lipid solubilisation alone for absorption of most drugs [30] and is highly
dependent on drug size and polarity [31]. Previously, we reported the effect of dyes
hydrophobicity on the distribution of hemicyanine dyes between aqueous and
micellar pseudo phase [10,19,32–34]. This work examines the spectroscopic response
of naphtholazobenzimidazole (NAB) dye, that is, 2-methyl-5-(diazo-2-naphthol)-
benzimidazole as a function of surfactant concentration, ranging from pre-micellar
to micellar region in aqueous medium. NAB exists almost entirely in hydrazone form
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(�max¼ 495 nm) in aqueous solution and tuatomerises to corresponding azo form
(�max¼ 418 nm) in organised molecular assemblies of ionic surfactants (Figure 1).

Difference spectra of azo dye obtained in sodium dodecyl sulfate (SDS) and
cetyltrimethylammonium bromide (CTAB) solutions were used for evaluating
partition equilibrium constants (Kc), and relative solubility (St/So). Spectral changes
occurring in solvents and surfactants were utilised to demonstrate dye–surfactant
associations, aggregation tendency and proclivity towards microenvironment.

2. Experimental

2.1. Materials

Cetyltrimethylammonium bromide and SDS were the products of Fluka and Sigma,
respectively. They were used without further purification. Naphtholazobenzimidazole
was prepared by diazo coupling of 5-amino benzimidazole with 2-naphthol, adopting
a reported method [35]. Crystallisation from methanol yielded scarlet crystals
[�max (H2O)¼ 495 nm]. The characterisation was done by TLC, 1H-NMR and
UV-vis absorption measurements. Solvents utilised for partitioning study were
obtained from Aldrich and used as received.

2.2. Measurements

2.2.1. Critical micelle concentration

Measurement of electrical conductivity of CTAB and SDS was made by using
a Microprocessor conductivity meter of WTW (model LF 2000/C) at 25� 0.01�C.
The critical micelle concentration (cmc) was determined from the plot of
conductivity versus surfactant concentration.
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Figure 1. Naphtholazobenzimidazole dye (NAB).
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2.2.2. Spectral shifts

Electronic spectra of dye, with and without surfactants were recorded on Perkin

Elmer (model �-20) UV-visible spectrophotometer at 25� 0.1�C. The dye
concentration (i.e. 1� 10�5mol dm�3) was kept constant throughout the experiment.

2.2.3. Differential absorbance

A dye solution of particular concentration (1� 10�5mol dm�3) was prepared. This
solution was used as solvent for preparation of surfactant solutions of various
concentrations. The difference spectra were measured (at 25�C) by setting the cuvette
filled with the dye solution in the reference side and one with the surfactant solution

at same dye concentration in the sample side of the spectrophotometer. The
temperature was controlled within �0.1�C by using a thermostat.

2.2.4. Solvent–water partition coefficients

A solution (1� 10�5mol dm�3) of NAB dye in a solvent of choice was kept at 25�C
for 1 h. Visible spectrum was then run, and the value of absorbance at the maximum
wavelength was measured (Ao). Equal volumes of organic solution and water were
mixed. Visible spectra of organic layer were run at regular intervals until the

absorbance value became constant (Ax). Due to low solubility of dye in pure
hydrocarbons; 5% DMSO solutions were used instead.

3. Results and discussion

The spectral behaviour of NAB dye as a function of surfactant concentration (Cs) is
summarised in Figure 2. With a fixed dye concentration, surfactant concentration is
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Figure 2. The �max of NAB as a function of surfactant concentration (^ SDS, g CTAB).
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varied from values below the critical micelle concentration to level almost eight-folds

the cmc. In sub-micellar CTAB, the visible absorption spectra of the dye remain

unperturbed. However an abrupt shift of 25 nm to shorter wavelength is observed

with broadening of band as CTAB concentration is raised to cmc value. This shows

that the formation of surfactant–dye clusters proceeds readily after cmc is reached.

These hypsochromic shifts are likely to arise due to the possibility of cationic

surfactant to constrain the electron pair present on hydrazo nitrogen of the dye [19].

This happens only after the intramolecular interactions in NAB are overcome in the

micellar region [36,37].
In the case of SDS, a blue shift of 15 nm is observed at surfactant concentration

below cmc, and then a red shift of 10 nm beyond original value is seen along with

spectral broadening as cmc is approached. Such response is ascribed to the growth of

pre-micellar aggregates, followed by the transfer of dye within anionic micelles [38].
Figure 3(a) and (b) shows that a significant increase in the absorbance of the

band at 418 nm occurs as the surfactant concentration exceeds the cmc. This reflects

a tautomeric shift due to change in microenvironment of dye [39]. However, this

increase in absorbance is not accompanied by a concurrent decrease in the intensity

of absorption maximum representing the corresponding hydrazone form. This could

be interpreted as the occupation of two different residence sites by NAB within

cationic and anionic micelles.
The formation of dye–surfactant aggregates as well as the distribution of dye

between aqueous and micellar phase have been some times described by the

association equilibria [16,20,40–44] where

iDþ jS��! ��DiSj,

illustrates the formation of mixed clusters between dye (D) molecules and monomeric

surfactant (S) and

yDþ Sn ��! ��DySn,

shows the distribution of dye (D) among micelles of normal type Sn [7].
Tokiwa’s equation [45] was adapted for evaluating the average number of

molecules per one dye molecule (nS) just above cmc:

ns ¼
Cm�

s ð"o � "mÞ

A� � A
, ð1Þ

where A� and A denote the absorbance of dye in aqueous and micellar phase and "�
and "m refer to the corresponding absorptivities. Cm�

s is the surfactant concentration

less than the critical micelle concentration.
Table 1 reports some experimental and calculated data including dye–surfactant

ratio (nD/nS) in mixed micelle. For CTAB, one dye molecule is associated with 10

surfactant molecules in the hybrid clusters. nS¼ 39 for SDS and gives nD/nS¼ 0.025,

evident of surfactant rich aggregates.
The equilibrium constant ‘Kc’ for the distribution of dye between aqueous and

micellar phase can be expressed in terms of the mole fraction of AAB in two phases.

Kc ¼
Xm

Xa
ð2Þ
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Figure 3. Spectral patterns of NAB: (a) �1� 10�5mol dm�3 dye, dye in SDS
�2� 10�3mol dm�3 SDS, - - in 32� 10�3mol dm�3 SDS; (b) �1� 10�5mol dm�3 dye, dye
in CTAB �2� 10�4mol dm�3 CTAB, - - in 32� 10�4mol dm�3 CTAB.
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The translation of Equation (2) in linear form produces [46]

1

�A
¼

1

Kc�A1ðCd þ Cmo
s Þ
þ

1

�A1
, ð3Þ

where Cd is the total dye concentration and Cm�
s is the analytical concentration

of the micellised surfactant. �A1 is the differential absorbance at infinite Cs, a

concentration where all dye molecules are assumed to have incorporated into the

micelles. �A� 0 for sub-micellar concentrations of two surfactants and increase

progressively for all Cs values greater than cmc (Figure 4). This directly indicates

the solubilisation of greater proportion of Cd into the micelles. Kc values obtained

from the plot of 1/�A against 1/(CdþCm�
s ) are displayed in Table 2 and

Figure 5(a) and (b). The partition coefficients yielded for two surfactants differ

considerably and confirm that dye is preferentially solubilised within CTAB

micelles, earlier indicated by nD/nS ratio calculated for SDS–NAB and CTAB–

NAB systems. For further investigation regarding the influence of CTAB and SDS,

Table 1. Experimental and calculated parameters characterising surfactant–dye association.

Surfactant
Cs� 10�4

(mol dm�3) Ao A
"m� 103

(dm3mol�1cm�1)
Cm� 106

(mol dm�3) ns nD/ns

CTAB 10.0 0.09 0.122 12.5 9.14 10 0.10
SDS 85.0 0.10 0.135 14.6 7.60 39 0.025

0

0.02

0.04

0.06

0.08

0
Cs x 10–n mol dm–3

n = 3 for SDS; n = 4 for CTAB

ΔA

10 20 30 40 50 60

Figure 4. Impact of surfactants on differential absorbance of NAB (^ SDS, g CTAB).
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Figure 5. 1/�A against 1/(CdþCmo
s ) for (a) SDS–NAB system and (b) CTAB-NAB system.

Table 2. Maximum energy of transition (�ET), partition coefficients (Kc, Kx) and Gibbs free
energy (�G�p) for dye–surfactant system.

Surfactant ET� 1019 (J)a Kc (dm
3mol�1) Kx �G�p (KJmol�1)

CTAB 1.428 1591 88320 �28.16
SDS 4.499 435 24134 �25.00

Note: aObtained using method given in [54].
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the relative solubility (St/S�) of NAB was ascertained by employing the following

relation [47]:

St

S�
¼ 1þ Kx�M, ð4Þ

where St and So denote total and intrinsic water solubilities.

Kx ¼ Kcnw, ð5Þ

nw is the moles of water per cubic decimeter, i.e. 55.5M, the micelle is given by

M ¼
Cs � CMC

Nagg
: ð6Þ

Here Nagg represents the micellar aggregation number. Average values of Nagg for

SDS and CTAB are reported widely [48] and were used to calculate micellar

concentration (M).
The simplified relations [Equations (7) and (8)] were used for estimation of partial

molal volumes (�) SDS and CTAB, utilising reported area per surfactant molecule

at surface saturation [49].

�SDS ¼
1

�

� �0:5

�ðAÞ1:5 ð7Þ

�CTAB ¼
1

2�

� �0:5

�ðAÞ1:5 ð8Þ

� ¼
NAðNaggÞ

1:5

6
,

where � is an empirical parameter that reflects aggregation tendency of a particular

surfactant and its impact on partial molal volume is shown in Equations (7) and (8).

The values computed for SDS and CTAB were well in agreement with the reported

values, i.e. 0.2464 and 0.3654 dm3mol�1 [49]. The parameters characterising the

relative solubility of dye in the examined ionic surfactants are presented in Table 3.

St/S� increases upon increasing Cs for both CTAB and SDS. The gap between St and

S� for one particular surfactant widens with increase in magnitude of M, suggesting

enhanced solubility of dye in micellar phase. For same micellar concentration M,

the relative solubility of NAB is higher in cationic surfactant CTAB in comparison

to SDS.
The Gibbs free energy for transfer of dye molecules from aqueous to micellar

phase (�Go
p) can be expressed as

�Go
p ¼ �RT lnKx: ð9Þ

Again �Go
p is more negative for CTAB and reflects an ease of transfer to cationic

micelles. The critical micelle concentrations for ionic surfactants determined

conductometrically are comparable to literature values (Table 4). Surface tension

studies conducted by Khamis et al. [26] shows independence of cmc of SDS and

CTAB in the presence of azo dyes, methyl orange and acid alizarin violet N. But the
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analysis of NAB–surfactant system carried out in this work confirms that NAB
induces the formation of surfactant aggregates. The change in cmc of ionic surfactant
caused by NAB was calculated using micelle water partition coefficients determined
earlier as [50].

�dðCMCÞ

dCd
¼

KxIsCMCo

nw
, ð10Þ

where �dðCMCÞ=dCd is the depression in cmc and Is an interaction coefficient of
surfactant [51,52].

Though the effect is not considerably large (Table 4), it cannot be ignored in the
conditions where solubilisate concentration is high enough to disturb the aggregation
process. Only a little effect of the presence of NAB on cmc values can be easily
explained keeping in view the low dye concentration used in present study, which is
certainly not expected to effect essentially the macroscopic physical property of the
system.

In addition to dye structure, the gradient of polarity offered by micelles plays a
major role in the distribution of dye between micelle and water phase. The partition
coefficients (p) of dye in solvent/water two-phase systems were measured

Table 4. Critical micellar concentration (cmc), interaction coefficient (Is) and depression in
cmc caused by NAB.

Surfactant

Critical micelle concentration (cmc)� 10�4 (mol dm�3)

Is

�dðCMCÞ

dCdPresent work Literaturea

CTAB 9.11 9.20 0.69b 0.897
SDS 0.82 0.82 0.62c 2.460

Notes: aTaken from [48].
bTaken from [51].
cTaken from [52].

Table 3. Relative solubility (St/So) of azo dye at different micellar
concentrations.

CTAB SDS

Cs� 10�4

(mol dm�3)
M� 105

(mol dm�3) St/So

Cs� 10�4

(mol dm�3)
M� 105

(mol dm�3) St/So

12.0 0.32 1.032 120.0 5.3 1.315
18.0 0.98 1.316 180.0 13.8 1.820
24.0 1.65 1.532 240.0 22.2 2.320
30.0 2.32 1.748 300.0 30.7 2.825
36.0 2.98 1.961 360.0 39.1 3.325
42.0 3.65 2.177 420.0 47.6 3.830
48.0 4.32 2.394 480.0 56.0 4.330
54.0 4.98 2.607 540.0 64.5 4.835
60.0 5.65 2.823 600.0 72.9 5.335
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to underline the dye’s affinity towards micro polarity of various regions within

micelles [53].

P ¼
Dsolvent

Dwater
¼

Ax

Ao � Ax
, ð11Þ

where Dsolvent and Dwater are the concentrations of dye in solvent and water,

respectively. Ao and Ax are the initial and final absorbance values of the organic layer.
The solvent water partition coefficients of NAB are delineated in Table 5. All

alkane–water partition coefficients are small as well as comparable and the only

information that emerges from this data is that hydrocarbon-like micellar interior

is impervious to NAB. Among n-alkanol–water system, the azo dye NAB showed

greater proclivity for higher alcohols. A co-relation between alkanol–water partition

coefficient and number of carbon atoms in alkyl chain of organic solvent (alkanol) is

illustrated in Figure 6. It is obvious to remark that the aggregation tendency of

Table 5. Solvent–water partition coefficients (P) and free energy change for the
transfer (�G�) of NAB.

Solvent Ao Ax P �G�a (KJmol�1)

n-Pentane 0.131 0.047 0.56 þ1.43
n-Hexane 0.129 0.044 0.51 þ1.67
n-Heptane 0.136 0.052 0.62 þ1.18
1-Butanol 0.294 0.259 7.4 �4.96
1-Hexanol 0.286 0.280 46.66 �9.52
1-Octanol 0.297 0.294 98 �11.36
Carbon tetrachloride 0.158 0.073 0.86 þ0.37

Note: a�G� ¼ �RT lnP.

0

40

80

120
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4 6 8 10

Figure 6. Effect of alkanol hydrophobicity on solvent–water partition coefficient of NAB.
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alkanol is responsible for relatively higher p-values. The dielectric of 1-butanol is
parallel to the dielectric of micelle–water interface of CTAB [54]. As dye is more
inclined towards higher alkanol, it may be proposed that NAB is buried slightly
deeper within cationic micelles.

The electronic spectra of dye recorded over concentration range (1� 10�6–
1� 10�5mol dm�3) remain unchanged (Figure 7). Hence, it may be concluded that
NAB does not undergo self-aggregation [4] at the low concentration used in this
work. The same applies to the small dependence of cmc in the presence of dye. Initial
investigation into the association process reveals the formation of pre-micellar
aggregates with anionic surfactant SDS, followed by distribution of dye between
aqueous and micellar pseudo phase. In the case of cationic surfactant CTAB, the
binding process is indeed cooperative and exhibited, and micelle–water partition
coefficient is significantly high for CTAB–NAB system. Detailed analysis of spectral
pattern shows the conversion of predominant hydrazone form of dye to
corresponding azo form upon transfer of charged micelles. Multiple residence sites
for NAB are conceived, based on structural transition, which is nevertheless
reversible.
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